662 research outputs found

    Role of fractal dimension in random walks on scale-free networks

    Full text link
    Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)(x,y)-flowers; the other is random, which is a combination of (1,3)(1,3)-flower and (2,4)(2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)(x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal

    Scaling of mean first-passage time as efficiency measure of nodes sending information on scale-free Koch networks

    Full text link
    A lot of previous work showed that the sectional mean first-passage time (SMFPT), i.e., the average of mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) averaged over all starting points in scale-free small-world networks exhibits a sublinear or linear dependence on network order NN (number of nodes), which indicates that hub nodes are very efficient in receiving information if one looks upon the random walker as an information messenger. Thus far, the efficiency of a hub node sending information on scale-free small-world networks has not been addressed yet. In this paper, we study random walks on the class of Koch networks with scale-free behavior and small-world effect. We derive some basic properties for random walks on the Koch network family, based on which we calculate analytically the partial mean first-passage time (PMFPT) defined as the average of MFPTs from a hub node to all other nodes, excluding the hub itself. The obtained closed-form expression displays that in large networks the PMFPT grows with network order as NlnNN \ln N, which is larger than the linear scaling of SMFPT to the hub from other nodes. On the other hand, we also address the case with the information sender distributed uniformly among the Koch networks, and derive analytically the entire mean first-passage time (EMFPT), namely, the average of MFPTs between all couples of nodes, the leading scaling of which is identical to that of PMFPT. From the obtained results, we present that although hub nodes are more efficient for receiving information than other nodes, they display a qualitatively similar speed for sending information as non-hub nodes. Moreover, we show that the location of information sender has little effect on the transmission efficiency. The present findings are helpful for better understanding random walks performed on scale-free small-world networks.Comment: Definitive version published in European Physical Journal

    Distinguishable RGE running effects between Dirac neutrinos and Majorana neutrinos with vanishing Majorana CP-violating phases

    Full text link
    In a novel parametrization of neutrino mixing and in the approximation of τ\tau-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tanβ\tan\beta, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.Comment: 12 pages, 5 figure

    Mean first-passage time for random walks on undirected networks

    Full text link
    In this paper, by using two different techniques we derive an explicit formula for the mean first-passage time (MFPT) between any pair of nodes on a general undirected network, which is expressed in terms of eigenvalues and eigenvectors of an associated matrix similar to the transition matrix. We then apply the formula to derive a lower bound for the MFPT to arrive at a given node with the starting point chosen from the stationary distribution over the set of nodes. We show that for a correlated scale-free network of size NN with a degree distribution P(d)dγP(d)\sim d^{-\gamma}, the scaling of the lower bound is N11/γN^{1-1/\gamma}. Also, we provide a simple derivation for an eigentime identity. Our work leads to a comprehensive understanding of recent results about random walks on complex networks, especially on scale-free networks.Comment: 7 pages, no figures; definitive version published in European Physical Journal

    Random Sierpinski network with scale-free small-world and modular structure

    Full text link
    In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.Comment: 7 pages, 9 figures; final version accepted for publication in EPJ

    Topologies and Laplacian spectra of a deterministic uniform recursive tree

    Full text link
    The uniform recursive tree (URT) is one of the most important models and has been successfully applied to many fields. Here we study exactly the topological characteristics and spectral properties of the Laplacian matrix of a deterministic uniform recursive tree, which is a deterministic version of URT. Firstly, from the perspective of complex networks, we determine the main structural characteristics of the deterministic tree. The obtained vigorous results show that the network has an exponential degree distribution, small average path length, power-law distribution of node betweenness, and positive degree-degree correlations. Then we determine the complete Laplacian spectra (eigenvalues) and their corresponding eigenvectors of the considered graph. Interestingly, all the Laplacian eigenvalues are distinct.Comment: 7 pages, 1 figures, definitive version accepted for publication in EPJ

    Degree-distribution Stability of Growing Networks

    Full text link
    In this paper, we abstract a kind of stochastic processes from evolving processes of growing networks, this process is called growing network Markov chains. Thus the existence and the formulas of degree distribution are transformed to the corresponding problems of growing network Markov chains. First we investigate the growing network Markov chains, and obtain the condition in which the steady degree distribution exists and get its exact formulas. Then we apply it to various growing networks. With this method, we get a rigorous, exact and unified solution of the steady degree distribution for growing networks.Comment: 12 page

    Theoretical study of the two-proton halo candidate 17^{17}Ne including contributions from resonant continuum and pairing correlations

    Full text link
    With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation

    Tri-Bimaximal Mixing from Twisted Friedberg-Lee Symmetry

    Get PDF
    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μτ\mu - \tau symmetry, and call that the twisted FL symmetry.Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing.In the first scheme, we suggest the semi-uniform translation of the FL symmetry.The second one is based on the S3S_3 permutation family symmetry.The breaking terms, which are twisted FL symmetric, are introduced.Some viable models in each scheme are also presented.Comment: 14 pages, no figure. v2: 16 pages, modified some sentences, appendix added, references added. v3: 14 pages, composition simplified, accepted version in EPJ

    Construction and functional analysis of nattokinase-producing cucumber obtained by the CRISPR-Cas9 system

    Get PDF
    Nattokinase (NK) is effective in the prevention and treatment of cardiovascular disease. Cucumber is rich in nutrients with low sugar content and is safe for consumption. The aim of this study was to construct a therapeutic cucumber that can express NK, which can prevent and alleviate cardiovascular diseases by consumption. Because the Bitter fruit ( Bt ) gene contributes to bitter taste but has no obvious effect on the growth and development of cucumber, so the NK-producing cucumber was constructed by replacing the Bt gene with NK by using CRISPR/Cas9. The pZHY988-Cas9-sgRNA and pX6-LHA-U6-NK-T-RHA vectors were constructed and transformed into Agrobacterium tumefaciens EHA105, which was transformed into cucumber by floral dip method. The crude extract of NK-producing cucumber had significant thrombolytic activity in vitro . In addition, treatment with the crude extract significantly delayed thrombus tail appearance, and the thrombin time of mice was much longer than that of normal mice. The degrees of coagulation and blood viscosity as well as hemorheological properties improved significantly after crude extract treatment. These findings show that NK-producing cucumber can effectively alleviate thrombosis and improve blood biochemical parameters, providing a new direction for diet therapy against cardiovascular diseases
    corecore